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Abstract 
The approximation of the tensor appearing at a discretization of the multidimensional 

function is considered from the viewpoint of storing and treating of the results of parametric 
computations obtained in computational aerogasdynamics. The new algorithm for the com-
putation of the canonical decomposition using gradient descent and approximately decom-
posable goal functional is described.  

This algorithm applies the random set of points on the hyperplane orthogonal to the 
computed core of the canonical decomposition (“umbrella”) that ensures its flexible applica-
tion for an approximation of the tensors with a priori unknown rank and may be naturally 
transferred on such tensor decomposition as the tensor train. The results of the numerical 
tests are presented for the model six-dimensional functions and for an ensemble of the nu-
merical solutions for the two-dimensional Euler equations. These equations describe the flow 
of the compressible gas with two crossing shock waves. The Mach number and angles of the 
flow deflection serve as the flow parameters. The results are provided for the dimensionality 3 
(simple numerical solution) and 4 (the ensemble of the numerical solutions in dependence on 
the Mach number).  

Keywords: canonical decomposition, parametric calculations, computational aerogas 
dynamics, gradient optimization, sliding regularization. 

 

Introduction 
The approximation of the multidimensional functions is of interest in a lot of applications 

such as quantum mechanics, solving kinetic equations of the Boltzmann type, parametric 
solving of the aerogasdynamic problems.  

Consider function f(x,y,z,u,v,w) determined in the domain 6R  and corresponding 

the Boltzmann probability density as the example. It is necessary to store 
1210  numbers for 

the grid containing 100 nodes along each coordinate. For the 64-bit number this statement 
requires the operative memory 64 TB that corresponds to parameters of the most powerful 
modern supercomputers. This circumstance hinders the practical applications of the Boltz-
mann equation both from the viewpoint cost and the time of computations.  

We consider the set of numerical solutions for parameter CFD problems as another ex-

ample. It is a set of functions 
1( , , , ... )i qf x y z   , where 1,...,i p  corresponds to the flow vari-

ables (density, velocity components, energy), and 
1( ... )

q

q q R     corresponds to the flow 

parameters (Mach, Reynolds numbers, angles of attack, etc.). These functions are defined in 
five-seven-dimensional spaces for the widespread practical applications that implies the use 
of the computational resources similar to above mentioned ones.  
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From the viewpoint of the practical applications, it is desirable to solve these problems 
with the computational costs close to resources of the standard personal computer. 

The approximation of functions in the multidimensional space is very computationally 
difficult problem due to exponential growths of required operational memory at increase of 
dimensionality (“curse of the dimensionality”). The application of the tensor forms of the 
multidimensional problems and their approximation by the tensor decompositions [1,2,3] is 
one of the ways to overcome these difficulties. The present paper id addressed to this prob-
lem. 

1. Canonical decomposition  

Canonical decomposition 1 2

1

...
r

d

r r rA Q Q Q     [1,2] is the most fundamental tensor 

decomposition since it determines the rank of the tensor. Herein  is the outer (tensor) 

product of vectors having the index form ij i j i jA a b a b   . The canonical decomposition in 

the index form is written as 

1 2 1 2

1 2

, ... , , ,

1

...
d d

r
d

i i i i i iA Q Q Q  


 . (1) 

This expression is unique with account the permutation and scaling [4,5]. 

The memory required in order to store this approximation of the tensor is about ~ rnd  

(where d  is the dimension of the space, n  is the number of nodes over one of directions, r  is 

the tensor rank) (instead the total memory necessary to store the tensor 
dn ). The time for the 

single node calculation ~ rd . The canonical decomposition provides the tremendous com-

pression of the data (number of grid nodes used for function approximation in dR ), that is to 

say 
dn d n r   .  

The problem for the determination of cores 1

, ,{ ,..., }d

i kQ Q   in the variational form has the 

appearance  

1 2

1

argmin ...
n

r
n d

Q

Q A Q Q Q


        . (2) 

The tensor rank r  is the key value at application of the canonical decomposition. In ac-
cordance with [1,4] this value is not computable due to the ill-posedness of the following 
statement 

1 2

1

argmin ...
r

d

r

r A Q Q Q  


     . (3) 

The applications of the canonical decomposition suffers from instabilities and requires a 
regularization [1, 4].  

2. Methods for Calculation of the Tensor Decompositions  
Methods for the calculation of the tensor decompositions may be with certain tolerance 

subdivided by two subclasses: linear algebra based methods, for example [3] and variational 
methods [5] (which are subdivided by the direct and iterative ones). 

The linear algebra based methods significantly depend on the matrization of the tensors, 
singular decomposition and contain a lot of interesting and original algorithms enabling to 
perform operations directly over cores without using the approximated functions.  

Variational statements usually are based on alternating least squares (ALS) [6,7], and, as 
a rule, also apply the matrization of tensors. Commonly, ALS is realized for the canonical de-
compositions via the Khatri Rao product (⊙) [6,7]. Unfortunately, the matrization of the ten-
sor does not provide its compression and does not relieve the curse of dimensionality. 



However, within the frames of the variational approach, one may construct algorithms 
that do not apply the matrization of tensors. Herein, we consider an optimization method in-
cluding some elements of the alternating least squares and the stochastic gradient descent. 
The application of the special set (“umbrella”), which is used in the optimization, is the spe-
cific feature of the method. This set enables to decompose the goal functional in the sum of 
the practically independent functionals. Another feature is the application of the Tikhonov 
regularization of the zero order at the estimation of cores in the gliding over range option. At 
such approach to the regularization, the components of cores are affected by the damping 
that is proportional to the index of core layer rank.  

3. The gradient optimization on the stochastic “umbrella”  
Formally, the quality of the approximation of a function by the canonical decomposition 

at every step of the global iteration may be estimated using the following discrepancy (written 
for 6D). 

2

, , , , , 1

{ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) } / 2
r

x y z u v w

total ijklmp

i j k l m p

Q i Q j Q k Q l Q m Q p f


      


        . (4) 

Herein, all nodes of the tensor are used similarly to ALS with the application of the 
Khatri-Rao product. Unfortunately, for the considered dimensions, this functional can not be 
computed (at least, at usual personal computers) due to tremendous needs for computation 
time. We numerically estimated its value using Monte-Carlo method in the form  

2

1

1
{ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) }

2

s MC
x y z u v w

MC ijklmp

s

Q i Q j Q k Q l Q m Q p f
Mc 

      




        , (5) 

where at every step of summation s  every index from , , , , ,i j k l m p  was chosen as the random 

uniformly distributed number. In the result, we compute the averaged over the ensemble sum 
of the squares of approximation error. The number of tries in the ensemble is in the range 

1000 100000MC   , where the result relatively weakly changes at the variation of the num-
ber of tries. 

Some alternative is necessary since the functional (4) is practically noncomputable and 
functional (5) may be applied to the calculation of cores only in the frame of the Monte-Carlo 
method. As such alternative, herein, we apply the special form of the goal functional, which 
does not require the great computational efforts and enables to obtain expressions for the 
gradient of the goal functional over cores, which are suitable for the gradient based optimiza-
tion. In the contrast to the standard approach based on the Khatri Rao product, the consid-
ered algorithm is not restricted by the dimensionality (does not applies tensor matrization or 
the total set of the tensor nodes) and is significantly simpler algorithmically. 

The special choice of the ensemble of points used in the optimization is the basic feature 
of this algorithm. These points are randomly selected on the hyperplane that is orthogonal to 
the coordinate corresponding to the core (on “umbrella”, Fig. 1). 

 

 
Fig. 1. The ensemble of points used in the optimization (“umbrella”) 

 



The cores ( , ), ( , ), ( , )...x y zQ i Q j Q k    are obtained by the consequent run. 

Let’s consider the algorithm on the example on the core over x  at point i : 

( , ), 1...xQ i r    and corresponding discrepancy 
, ( ( , ))x

x i Q i  , (other components of the core 

( , )xQ i  are calculated consequently over i ) 

,

1...

( ) 1/ 2 {( ( ) ( , ) ( , ) ( , )... )i i i i i
e e e e e

x x y i z i

x i e e ij k l m p
e Lens

Q C Q i Q j Q k f


    


        

( ( ) ( , ) ( , ) ( , )... )}i i i i i
e e e e e

x y i z i

e e ij k l m p
C Q i Q j Q k f



        . 
(6) 

The points of ensemble , , , ,i i i i i

e e e e ej k l m p  are numbered by the index 1...e Lens  ( i  corre-

sponds to the node where the “umbrella” opens. They are located on the hyperplane, which is 
orthogonal to x  (at point i ) and are selected randomly. 

Herein i i i i i
e e e e eij k l m p
f  is the exact value of the function at point , , , , ,i i i i i

e e e e ei j k l m p .  

At computations, the dimension of the ensemble is much greater the preliminary esti-
mate of the tensor rank Lens r . The enhancement of the ensemble dimension increases 
the computational costs for the discrepancy and its gradient estimation.  

Let’s disturb this core by ( , )xQ i . Corresponding variation of discrepancy has the ap-

pearance:  

,

1...

( ) {( ( ) ( , ) ( , ) ( , )... )i i i i i
e e e e e

x x y i z i

x i e e ij k l m p
e Lens

Q C Q i Q j Q k f


    


         

( ( ) ( , ) ( , ) ( , )... )}i i i i i
e e e e e

x y i z i

e e ij k l m p
C Q i Q j Q k f



        . 
(7) 

Accordingly, the gradient of the discrepancy has the form: 

,

1...

/ ( , ) {( ( ) ( , ) ( , ) ( , )... )i i i i i
e e e e e

x x y i z i

x i e e ij k l m p
e Lens

Q i C Q i Q j Q k f


     


          

( ) ( , ) ( , )...}y i z i

e eC Q j Q k     . 

(8) 

For the cross derivatives (over other cores, herein, for example, over ( , )yQ j ) in ensem-

ble points e , the corresponding expression has the appearance: 

, / ( , ) {( ( ) ( , ) ( , ) ( , )... )i i i i i
e e e e e

y x y i z i

x i e e ij k l m p
Q j C Q i Q j Q k f



              

( ) ( , ) ( , )...}x z i

eC Q i Q k     . 

(9) 

at i

ej j  (otherwise- 0). It is important that the summation over the ensemble disappears. By 

this reason, such terms are approximately by1/ ensL  less the main one (8). Due to this circum-

stance we neglect these terms that enables to perform the optimization only over ( , )xQ i . 

Thus, instead single global discrepancy (used in computations for check)  

, ,{ ...} / (6 )x i y j ens

i j

N L         (10) 

we optimize 6N  separate discrepancies (for simplicity, we assume that there is N  nodes 
along each coordinate) 

, ,; ...x i y j  . (11) 

The components of the cores are determined using consequent optimization of discrep-
ancies over the number of the core and the number of the node on the core  

,( , ) argmin ( ( , ))c c

c iQ i Q i    (12) 

The gradient based steepest descent is used for the optimization, for ( , )xQ i  it has the 

appearance: 



1

, ,{ ( , )} { ( , )}x n x n

x iQ i Q i        . (13) 

The general structure of the algorithm has the form (circle over cores and their nodes): 
 

Algorithm 1. The search for the cores of the canonical decomposition using 
steepest descent  

Input 
Initialize 

for 1...c d  (X,Y,Z,U,V,W) do ! circle over coordinates 

for i=1... cN  do ! circle over nodes along core  

 The search of the minimum is realized by the method of the steepest descent  
for 1...r  do ! circle over index of rank 

 1

, ,( ( , )) ( ( , )) / ( , )c n c n c

c i c iQ i Q i Q i          

 end for 
 output 

Such primitive structure of the algorithm may be realized because the gradients are ap-
proximately decomposable: 

, , , , , ,{ ... ...} { ...} (1/ )x x y y x y
i i j j i j
x i y j x i y j x i y j ensQ Q Q Q Q Q

O L                   . (14) 

with the tolerance of ~ (1/ )ensO L . The choice of the ensemble of points that are used for the 

estimation of the discrepancy functional is the reason of the decomposability. 

3.1 The gliding regularization  
In the paper the regularization gliding over the index of rank is applied, that is based on 

the zero order Tikhonov regularization [9] with the regularizing coefficient that increases 
along the rank index   as 

2 2

, ( , ) ( 1) / 2c

c i Q i       (15) 

Herein   is the basic regularizing coefficient. 

Corresponding iterations has the form: 
1 2

, ,( ( , )) ( ( , )) { / ( , ) ( , ) ( 1)c n c n c c

c i c iQ i Q i Q i Q i                  (16) 

The general optimization is reduced to local consequent optimization over ~ 6N  discrep-

ancies. The values MC  (5) and   (10) are used for the control of the convergence.  

The optimization of the cores components is terminated at 1  , 7 9

1 10 10    . The 

process of the determination of the canonical decomposition was broken at 2MC  , 
5 7

2 10 10    . 

4. The results of the numerical experiments on the inter-
polation of the multidimensional functions 

Let’s consider the approximation of the six-dimensional function f  (more strictly speak-

ing the tensor ijklmpf , which corresponds the values of the function at nodes of the regular 

grid) by the canonical decomposition and the corresponding set of cores 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )x y z u v wQ i Q j Q k Q l Q m Q p          . 

The grid containing 100 nodes along each coordinate was used in the numerical tests. 

Formally, the storage of ijklmpf  requires 
1210  numbers on this grid that is closely nonrealistic 

both from the necessary memory and the computing time. As the illustration one should 
mark that, at the considered case, the memory necessary to store cores with the rank 100 (ra-



ther great) is 6 100 100 60000    numbers. This illustrates the superhigh data compression (
7~10 ) at the canonical decomposition. 
At debugging the comparison of the numerical (obtained by the direct numerical differen-

tiation) and analytical (obtained using the expression (8)) gradients was performed that 
demonstrates their practically perfect coincidence. 

The results of computations provide enough stable and reproducible estimates of errors.  
At the first stage the testing of the approximation of different functions using the canoni-

cal decomposition was performed. The following multidimensional functions were considered 
that are arranged in the order of the complexity increasing.  

f x y   (17) 

It is utterly simple function, however its rank is not known a priori. 30 iterations were 
used and the rank was varied from 1 to 10. The dependence of the discrepancy value (5) on 
the rank magnitude is presented in Table 1.  

 
Table 1. The dependence of the discrepancy value (5) on the rank for the function (17). 

rank 1 2 3 4 5 10 

discrepancy 21.46 10  
87.13 10  

71.68 10  
72.22 10  

74.39 10  
52.00 10  

 
The rapid decreasing at reaching true value of the rank (herein, 2) and slow increasing at 

further growth of the rank is specific for the discrepancy. These results demonstrate that, in 
general, the discrepancy magnitude may serve as an indicator of the true rank of the tensor. 
As the rank increases the noise in the results grows. We consider this circumstance as an evi-
dence of instabilities occurring due to the ill-posedness of the canonic decomposition [1,4]. 

Fig. 2 and 3 provide the true function (17) and its approximation at rank 2. 
 

  

Fig. 2. True function 
Fig. 3. Approximation via the canonical decom-

position 
 
Function (17) is two-dimensional, let’s consider more complex true six-dimensional event 

assigned by a Gaussian and a sum of sines along all directions in a form  
25 exp( ) sin( / 5) sin( / 5) sin( / 5) sin( / 5) sin( / 5) sin( / 5)f rad x y z u v w          

( 0.001 (( 50) ( 50) ( 50) ( 50) ( 50) ( 50)))rad ix iy iz iu iv iw             . 
(18) 

Figs. 4 and 5 present results for the rank 10 and the ensemble of 1000 points in the plane 
,x y , other variables correspond to the middles of the intervals at grid dimension 100. The 

results of approximation practically can’t be distinguished from the true function. At decreas-
ing of the ensemble dimension the quality of the approximation deteriorates. In general, at 
approximation of enough complex functions, the ensemble should be significantly greater the 
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a priori estimate of the rank. Fortunately, the application of the zero order Tikhonov regulari-
zation in the gliding option enables to minimize the current rank and leaves the necessarity of 
a priori knowledge of the rank (or running over the ranks).). 

 

  

Fig. 4. Exact function (18) 
Fig. 5. Approximation of (18) by the canonical 

decomposition 
 
The Fig. 6 provides the behaviour of the different convergence criteria in the dependence 

on the number of iterations. The discrepancies   (10) (Eps), the global discrepancy estimat-

ed using Monte-Carlo method MC  (5) (Eps_MC) and the norm of the discrepancy gradient 

(grad norm) are provided in the logarithmic form. 
 

 
Fig. 6. Different criteria of the convergence in the dependence on  

the number of iterations 
 

Discrepancy   (10) (Eps) and the global discrepancy estimated using Monte-Carlo MC  

(5) (Eps_MC) demonstrate similar behaviour suitable for the convergence check. The norm of 
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the gradient (grad norm) is not monotonic at the start iterations that restrict its applicability 
as the stopping criterion. 

In general, the considered approach does not provide the monotonic minimization of the 
global criteria since the minimization is performed by points. However, the numerical tests 
demonstrate monotonic convergence for the global criteria. The considered algorithm pro-
vides significantly more rapid convergence if compare with one used by [10]. 

Really, in the numerical tests we calculate not the true rank of the function (tensor), but 

the approximation of the rank r , providing the discrepancy  . Fig. 7 demonstrates that the 

variant of the Tikhonov regularization, used in the paper, enables to decrease the effective 
rank by increasing regularizing parameter, however, the regularization qualitatively changes 
cores. 

 

 
Fig. 7. The dependence of the discrepancy on the rank for the function (18) 

5. The results of the numerical tests for the approximation 
of the results of the parametric calculations.  

As an example, we consider the two dimensional steady flowfield in the parameter space 
of the dimension from one to three. It corresponds to the case of the interaction of two super-
sonic air flow occurring at the flow around two symmetric edges. The flow structure is de-
scribed by the steady Mach and regular modes of the shock waves interaction. The Mach 

number (2,6)M   and flow deflection angles 1 2( , ) (15,30)    are the parameters.  

The ensemble of the solutions on the same spatial grid with different parameters 

1 2( , , )M   may be considered as the tensor of the order 6 : 

; , ; , , , ; , , , ; , , , ; , , , ; , ,( , , , )p i j k n m i j k n m i j k n m i j k n m i j k n mT u v e  ( p  is the number of the gasdynamical variables, 

,i j  are the indices of the coordinate nodes, , ,k n m  are the numbers of the parameters 

1 2( , , )M  ). 

Let’s consider the formation of the canonical decomposition on such ensemble of solu-
tions that enables the radical compression of the data. 
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We construct the canonical decomposition using the structure “umbrella”. One calcula-

tion of the flowfield (elementary “building block”) 
; , ;1,1,1p i jT  - it is complete completed tensor of 

the order 3. 
One may relatively easy to form the tensor of the order 4 using the sequence of the ten-

sors of the order 3 (by the transition from 
; , ;1,1,1p i jT  to 

; , ;2,1,1p i jT  and so on). It is enough labori-

ous ( 10 100ensI    of the separate computations), but realistic task. However, already at the 

generation of the tensor of the order 5 the troubles appear. At the every layer one should to 
determine the tensor of the order 4 from the scratch. It is highly laborious from the computa-
tional standpoint and practically impossible for the tensor of the following rank. So, the addi-
tional problem of the tensor completion using incomplete data arises, which can be consid-
ered in the above described optimization statement with the special selection of the support 
ensemble of calculations. 

Fig. 8 and 9 provides the results of the calculation of the flowfield (density) for 
1 15   

(the deflection of the upper flow), 
2 20  (the deflection of the down flow), 4M   and cor-

responding approximation by the canonical decomposition (rank 15, the number of point on 

the ensemble 2000). The tensor 
; ,p i jT  of the order 3 is used. The flow is directed from the 

right side. The zone of the high density past crossing shock waves is presented in the fore-
ground.  

 

  

Fig. 8. Density field calculation 
Fig. 9. The approximation of the density field 
using the canonical decomposition (third or-

der tensor) 
 
The results presented by Figs. 8 and 9 demonstrate the operationability of the approxi-

mation (compression) of the flowfields using the canonical decomposition.  

Fig. 10 and 11 present the results of the flow-field computations (density) (
1 15  ,

2 20  , 3M  ) and corresponding approximation using canonical decomposition (rank 3, 

the number of the points of the ensemble -200). The tensor of the order 4: ; , ,p i j MT  was used, 

with five layers on (3.0;3.5;4.0;4.5;5.0)M  . 
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Fig. 10. Density field calculation 
Fig. 11. The approximation of the density field 
using the canonical decomposition (fourth or-

der tensor) 
 
The results presented in Figs. 10 and 11 demonstrate the correctness of the approxima-

tion (compression) of the one parameter flowfield using the canonical decomposition. The 
observed oscillations of the approximation are possibly related with the ill-posedness of the 
determination of the canonical decomposition. There exists some hope that the quality of the 
solution may improve after the transition to the tensor train format. 

6. Discussion 
Due to the ill-posedness of the problem of the estimation of the cores of the canonical de-

composition [4] the feasibility of the quadratic regularization of the zero order (Tikhonov [9]) 
with the gliding regularization is provided. It enables to compress the approximation of the 

rank r , ensuring the discrepancy   (to obtain the upper estimate of the rank). 

Tensor decompositions are enough actively used for the visualization [11], since it rather 
easy enable to engender a computable model that approximate the difficult set of the data in 
the parameter space. Tensor decompositions (canonical decomposition, tensor train, hierar-
chical Tucker) are used for economic solving of the multidimensional problems such as the 
Boltzmann equation [5,13,14]. The tensor train format and the cross-approximation [13] are 
rather often used for these purposes. The above considered approach may be easily expanded 
to the tensor train format and has no restrictions on the computer resources specific for the 
cross-approximation (related with the matrization of the tensor). The applied herein canoni-
cal decomposition enables efficiently approximate and store the multidimensional functions. 

The computational time for the operations with the functions in the six-dimensional 
space (at 100 nodes along every coordinates that formally requires to store and operate with 

1210  numbers) is about 1-3 minutes on the personal computer (processor Intel I5, 2.66 GHz) 

at the required memory for cores store (maximally) about 
510  numbers. Some hope exists 

that the transition to the tensor train format may enable to overcome part of the canonical 
decomposition drawbacks related to ill-posedness and instability.  

Conclusion 
The optimization algorithm for the determination of the cores in canonical decomposi-

tion is offered, which requires much less memory if compare with the standard methods us-
ing the matrization of the tensor and the Khatri-Rao product. The gliding over rank regulari-
zation is applied in the algorithm, which enables to reduce the effective rank of the approxi-
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mation for the sake of the reduction of the norm of core layers with the higher indexes of 
ranks. 

Numerical tests demonstrate that the application of the above described algorithm for the 
realization of the canonical decomposition enables to store and visualize functions in the mul-
tidimensional space with moderate needs for the memory and the computational time. This 
circumstance provides a special interest from the standpoint of analyzing and treating results 
of the calculations for the multiparametric problems of computational fluid dynamics. 
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